Drowsy Driver Detection Through Facial Movement Analysis

نویسندگان

  • Esra Vural
  • Müjdat Çetin
  • Aytül Erçil
  • Gwen Littlewort
  • Marian Stewart Bartlett
  • Javier R. Movellan
چکیده

The advance of computing technology has provided the means for building intelligent vehicle systems. Drowsy driver detection system is one of the potential applications of intelligent vehicle systems. Previous approaches to drowsiness detection primarily make pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy driving.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning Systems for Detecting Driver Drowsiness

The advance of computing technology has provided the means for building intelligent vehicle systems. Drowsy driver detection system is one of the potential applications of intelligent vehicle systems. Previous approaches to drowsiness detection primarily make pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to data-mi...

متن کامل

Drowsy Driving Detection and Monitoring Based On EEG Signals and Global Position System

Drowsy driving is one of important factors to cause the car accident. The parents usually worry about the traffic safe of their children. Therefore, we proposed a drowsy detection and monitoring system through Internet in this paper. Firstly, the brain wave was captured by single channel EEG device. Therefore the drowsy state of driver can be analyzed by drowsiness detection system. The system ...

متن کامل

Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks

Statistics have shown that 20% of all road accidents are fatigue-related, and drowsy detection is a car safety algorithm that can alert a snoozing driver in hopes of preventing an accident. This paper proposes a deep architecture referred to as deep drowsiness detection (DDD) network for learning effective features and detecting drowsiness given a RGB input video of a driver. The DDD network co...

متن کامل

Efficient Measurement of the Eye Blinking by Using Decision Function for Intelligent Vehicles

In this paper, we propose an efficient measurement of the eye blinking for drowsy driver detection system that is one of the driver safety systems for the intelligent vehicle. However, during the real driving in the daytime, driver’s face is exposed to various illuminations. It makes too difficult to monitor driver’s eye blinking. Therefore, we propose efficient formation of the cascaded form o...

متن کامل

Prevalence of motor vehicle crashes involving drowsy drivers, United States, 1999-2008.

The proportion of motor vehicle crashes that involve a drowsy driver likely is greater than existing crash databases reflect, due to the possibility that some drivers whose pre-crash state of attention was unknown may have been drowsy. This study estimated the proportion of crashes that involved a drowsy driver in a representative sample of 47,597 crashes in the United States from 1999 through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007